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Tomita Representation of the Arnol'd Cat Map 
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The Tomita Hilbert-space representation of the Arnol'd cat map model of Benatti 
et al. is described and the operators representing physical quantities are defined 
for the classical and quantum cases. It is seen that the exponential decay of 
correlations is preserved upon quantization. 

1. INTRODUCTION 

A task which has initiated a considerable amount of research in the 
last decade has been to characterize the dynamics of quantum systems that 
correspond to classical systems with chaotic properties (Cerdeira et  al., 1991 ; 
Cvitanovi'c et  al., 1992; and references therein). Among the various 
approaches to this field, one is to investigate the explicit time evolution of 
a quantum system when the evolution equation of the classical correspondent 
is sufficiently simple to be carried over to the quantum domain. A natural 
starting point is to try to quantize the simplest dynamical maps known to 
exhibit chaotic properties. The prototype of such maps on the phase space 
is the Arnol'd cat map, which for its simplicity combined with its strong 
stochastic properties has been considered by many authors (Arnol'd and 
Avez, 1968; Sagdeev et  al., 1988; Casati et  at., 1979; Berry et  al., 1979; 
Ford et  al., 1990; Benatti et  al., 1991). 

A systematic and mathematically elaborated method for quantization of 
the Arnol'd cat map has been presented by Benatti et  al. (1991a,b). They 
conclude that, although the map is mixing, it is not a K-system (in the 
algebraic sense) for irrational values of h. Thus the classical case h = 0, 
which is known to be a K-system, is actually one of the exceptional measure- 
zero cases of rational h's. 
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The phase space representation is the main tool for studying dynamical 
phenomena in classical mechanics. When we turn to quantum mechanics to 
see what the dynamics looks like when Planck's constant no longer is assumed 
to be zero, one would like to retain as much as possible of the structure of 
the original phase space description. This can be done by using Tomita 
representations (Grelland, 1992). Benatti et  al. (1991 a,b) actually use a Tomita 
representation, but the authors chose to work at an abstract algebraic level, 
without dealing with details of the representation. As a consequence, the 
physical content of their model is by no means obvious, in particular to 
readers unfamiliar with the theory of W*-algebras. Even for the advanced 
reader it will be of interest to explore in more detail the possible physical 
content and implications of this model. 

The present study is based on the formulation of the general theory of 
Tomita representations of classical and quantum mechanics given by Grelland 
(1992). We find that by using a simple bra/ket formulation instead of the 
mathematically rigorous C*-algebraic approach, the theory becomes much 
more transparent and easier to interpret. 

The phase space of the Arnol'd cat map model is the two-torus. Thus, 
we have to deal with periodic boundary conditions, which have led to consid- 
erable difficulties in the traditional approaches to the quantization of this 
system. It will be seen that special care has to be taken with respect to domain 
questions. Except for this, the formulation is formally similar to the Tomita 
representation of the R 2 phase space. While Benatti et  al. (1991a, b) confined 
themselves to identifying a unitary group generating the relevant algebra and 
to studying the Heisenberg picture dynamics on this algebra, we try to identify 
operators corresponding to physical quantities of the theory, thus facilitating 
the interpretation of the state functions and the introduction of the Schr0dinger 
picture dynamics. 

A question of central importance in investigating this model is: which 
stochastic properties are lost and which are kept upon quantization? We show 
that for the quantum states the property of exponential decay of correlations 
is kept also for the quantum system. 

2. THE TOMITA KET SPACE OF THE TORUS 

The Tomita ket space of the torus T 2 = [0, 1) 2, equipped with addition 
and multiplication modulo 1, can be characterized by the basis 

B = { ] q ] ] q  ~ [0, 1] 2 } (2.1) 

This basis gives rise to the representation f (q)  = [q If]. We write the two 
components of the vector q = (q, p). We also introduce the countable Fou- 
rier basis: 
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BF = { I k] I k E Z 2, [q I k] = exp(2"rrik, q) } (2,2) 

The components of k will be written k = (k,/). The ket space and its operators 
are used as means for modeling physical systems which have the torus as a 
classical phase space. To specify such a model in detail, we select an appro- 
priate set of operators on the ket space. We need unitary operators for repre- 
senting symmetry transformations, and self-adjoint operators for representing 
physical quantities. When working on the toms, one has to be more careful 
with respect to the domain of  definition for unbounded operators than is 
customary in ordinary quantum mechanics. 

The basic self-adjoint operators which we will need are 

Q01q] = qlq]  

P0[q] = P lq] (2.3) 

Olk l  -- 2-rrk[k] 

E l k  ] = -27r/Ik]  (2.4) 

The operators D, E may also be written as derivation operators if they are 
properly restricted to the domain consisting of functions of the q-representa- 
tion that are periodic in the corresponding coordinate. The Fourier basis 
functions have this property. We have 

[qlO = - i  d ldq[q l  

[q[ E = i d / d p t q l  (2.5) 

The operators defined above will be written, pairwise, as vectors: Qo 
= (Qo, Po), E = (E, D), D = (D, -E ) .  Thus, (2.4) can be written in a 
vector notation 

Qo[q] = [q] (2.6) 

D[k]  = 2"rrklk] (2.7) 

The unitary operator representing a translation b and a boost rnv modulo 
1, b = (b, mv) ,  is 

V(b) = exp(2"rriE.b) (2.8) 

The conjugation operator, characteristic for a Tomita representation, can 
be described in the bases defined above: 

[qlJlfl  = [qlf]* (2.9) 

[klJIf] -- [ -k l f ]*  (2.10) 
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The states of the classical toral system are represented by normalized 
kets If] in the cone ~:  

= {If]l[qlf]  ~ o }  (2.11) 

with the expectation value 

(Qo) = [fl Qo If] ( 2 . 1 2 )  

for a system in a state If]. Of particular significance is the state 10] E BF 
(i.e., k = 0), of uniform phase space distribution: 

[qlO] = 1 (2.13) 

We will later need the projection operator P onto the uniform state: P = I 0][01. 
We are now in a position to write down a pair of quantum operators 

corresponding to the classical operators Qo: 

Q = Q0 + (h/4~r)E (2.14) 

We would like to write down the commutator [Q, P], but we have to be 
careful about the domain. If If] is such that Q If] is in the domain of P and 
P If] is in the domain of Q, then 

[Q, P] If] = ih/2"rrlf] (2.15) 

We find it reasonable to interpret Q, P as the position and momentum 
operators of the quantum model. 

A Fourier state does not fulfill the conditions mentioned. However, the 
inner product between [Q, P] I k] and I k] exists and has, perhaps surprisingly, 
the property 

[kl [Q, P][k] = 0 (2.16) 

Since all physically relevant operators of the quantum system are generated 
by the pair Q, it follows that the expectation value with respect to the Fourier 
states of the commutators of all pairs of such operators are zero. These states 
are said to be tracial with respect to this operator algebra, in analogy with 
the trace property tr(AB) = tr(BA). 

The conjugation operator J is the same in the quantum case as in the 
classical case, which implies that the quantum state functions are real, since 
they are invariant under the action of J, but not necessarily positive. We will 
not present an explicit criterion defining exactly the cone of quantum states, 
a problem similar to that of delimiting the set of Wigner functions representing 
physical states. But we will make use of the following observation: 
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Each quantum state functionf(q) can be written as the difference between 
two classical (positive) state functions. Conversely, each classical state func- 
tion can be written as a difference between two quantum state functions. 

This statement can be deduced trivially from the fact that both the 
quantum and the classical state functions are real, and that the classical state 
cone contains all positive functions. 

3. THE QUANTUM ALGEBRA 

To show the connection between the formalism presented above and 
that of Benatti et al. (1991a,b), we will consider the algebra of bounded 
operators generated by Q. We define the unitary group of unit (periodic) 
translations {W(n)} which generates the relevant algebra: 

W(n) = exp(2rriQ.n); n = (n, m) ~ Z 2 (3.1) 

It follows from the commutation relation of Q, P that 

W(n)W(n')  = W(n + n')e 2~i~ (3.2) 

The algebra of the classical system is generated by the Abelian group { W0(n) } : 

W(n) = exp(2-triQ0.n); n ~ Z 2 (3.3) 

Using the definition (3.1), it is easily seen that 

W(n) lk] = ]k + n]e 2~riO~k''-/'O (3.4) 

Consequently, the Fourier basis is obtained by applying the operators of this 
set on the uniform state: 

W(n) 10] = In] (3.5) 

Since the Fourier states form a basis for the Hilbert space, it follows that the 
group {W(n)} generates the operator algebra on that space. 

4. THE ARNOL'D CAT MAP 

The Arnol'd cat map (ACM) dynamics is generated by the operator 

ulq] --ITq(mod 1)] (4.1) 

where T is the two-by-two matrix T = (1, 1; 1, 2). The matrix T is symmetric, 
isometric, and nonorthogonal. The dynamics q(k + 1) = Tq(k) (mod 1) on 
the phase space is known to be chaotic in every sense of the word. It is 
chaotic in the topological sense of Devaney (1989), it is ergodic, mixing, 
and a K-system in the algebraic and entropic sense, and in the sense of 
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Sagdeev et  al. (1988). The points with rational coordinates on T 2 constitute 
a dense subset of periodic points on the torus. A very enlightening and 
detailed analysis of the behavior of the representativef(q) under the repeated 
application of U is given by Ford et  al. (1990). 

The action of U on the Fourier basis can be properly described in the 
bra space, 

[k] U -- [Tk I (4.2) 

This can equivalently be written 

[T-"k[U" = [k I (4.3) 

Moreover, T-"k  (except for k = 0) has values of increasing absolute value 
as n --> oo. For a state If], the Fourier components [k If] for high values of 
k are increasingly small. However, as n increases, the high values of the low 
Fourier components are moved upward to the higher components, making 
the function less smooth. In exchange for this, [kl U" If] for a given k obtains 
its value from higher and higher Fourier components of the original function, 
approaching zero as n ~ oo. Eventually, the only component not vanishing 
in the limit is [0 If]. Thus, 

[giN"l f] -- 5] [glk][klU"lf]  
k 

: X Iglk]tT"klf] 
k 

--, [gr0][0lf] = [glPlf] (4.4) 

This is the property of mixing, and can be expressed by the correlator 
[f l  U" - P i g ] ,  

If] U" - Pig] -~ 0 as n ---) ~ (4.5) 

Actually, more is known about this limit (Sagdeev et  al.,  1988, p. 168): 

[fJ u "  - P i g ]  = a e  -~" (4.6) 

where h = ln[�89 + 5t/2)] and A = [ f l l  - P i g ] .  This is an expression of 
the local exponential separation in q space with an exponential factor equal 
to h. This constitutes the K-property of Sagdeev et al. (1988). 

Note that, since each quantum state can be written as a difference 
between two classical states, the same type of exponential decay as expressed 
in (3.6) is valid in the quantum case. Thus, in both cases we have an exponen- 
tially fast decay of correlations, reflecting the local exponential separation 
of the paths of the Arnol'd cat map. The difference between the two cases 
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consists only in the choice of initial states If], I g] of the correlator. Thus, 
this strong stochastic property is preserved for all values of h. 

5. CONCLUSION 

We have seen that the model of Benatti et al. is an example of a Tomita 
representation, a fact which makes it possible to identify elements of the 
model sustaining a detailed physical interpretation (state vectors, operators 
of physical quantities). Moreover, we have pointed out that the quantized 
system still has the strong stochastic property of exponential decay of correla- 
tion between the state functions, a property which in the classical case is 
regarded as an indicator of chaos. 
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